problem decomposition

systems decomposition

communication

code organization within a
file

code organization across

files

source tree organization

code readability

defensive coding

error handling

IDE

API

frameworks

requirements

scripting

database

2n (Level 0)

Only straight line
code with copy
paste for reuse

Not able to think
above the level
of a single
file/class

Cannot express
thoughts/ideas
to peers. Poor
spelling and
grammar.

no evidence of
organization
within a file

No thought
given to
organizing code
across files

Everything in
one folder

Mono-syllable
names

Doesn't
understand the
concept

Only codes the
happy case

Mostly uses IDE
for text editing

Needs to look
up the
documentation
frequently

Has not used
any framework
outside of the
core platform

Takes the given
requirements
and codes to
spec

No knowledge
of scripting
tools

Thinks that
Excel is a
database

PROGRAMMING

n2 (Level 1)

Able to break up problem into
multiple functions

Able to break up problem
space and design solution as
long as it is within the same
platform/technology

Peers can understand what is
being said. Good spelling and
grammar.

Methods are grouped logically
or by accessibility

Related files are grouped into a
folder

Basic separation of code into
logical folders.

Good names for files, variables
classes, methods etc.

Checks all arguments and
asserts critical assumptions in
code

Basic error handling around
code that can throw
exceptions/generate errors

Knows their way around the
interface, able to effectively
use the IDE using menus.

Has the most frequently used
APIls in memory

Has heard about but not used
the popular frameworks
available for the platform.

Come up with questions
regarding missed cases in the
spec

Batch files/shell scripts

Knows basic database
concepts, normalization, ACID,
transactions and can write
simple selects

n (Level 2)

Able to come up with reusable
functions/objects that solve the overall
problem

Able to design systems that span multiple
technologies/platforms.

ls able to effectively communicate with
peers

Code is grouped into regions and well
commented with references to other
source files

Each physical file has a unique purpose, for
e.g. one class definition, one feature
implementation etc.

No circular dependencies, binaries, libs,
docs, builds, third-party code all organized
into appropriate folders

No long functions, comments explaining
unusual code, bug fixes, code assumptions

Makes sure to check return values and
check for exceptions around code that can
fail.

Ensures that error/exceptions leave
program in good state, resources,
connections and memory is all cleaned up

properly

Knows keyboard shortcuts for most used
operations.

Vast and In-depth knowledge of the API

Has used more than one framework in a
professional capacity and is well-versed
with the idioms of the frameworks.

Understand complete picture and come up
with entire areas that need to be speced

Perl/Python/Ruby/VBScript/Powershell

Able to design good and normalized
database schemas keeping in mind the
queries that'll have to be run, proficient in
use of views, stored procedures, triggers
and user defined types. Knows difference
between clustered and non-clustered
indexes. Proficient in use of ORM tools.

log(n) (Level 3)

Use of appropriate data structures
and algorithms and comes up with
generic/object-oriented code that
encapsulate aspects of the
problem that are subject to
change.

Able to visualize and design
complex systems with multiple
product lines and integrations with
external systems. Also should be
able to design operations support
systems like monitoring, reporting,
fail overs etc.

Able to understand and
communicate
thoughts/design/ideas/specs in a
unambiguous manner and adjusts
communication as per the context

File has license header, summary,

well commented, consistent white
space usage. The file should look

beautiful.

Code organization at a physical
level closely matches design and
looking at file names and folder
distribution provides insights into
design

Physical layout of source tree
matches logical hierarchy and
organization. The directory names
and organization provide insights
into the design of the system.

Code assumptions are verified
using asserts, code flows naturally
— no deep nesting of conditionals
or methods

Has his own library to help with
defensive coding, writes unit tests
that simulate faults

Codes to detect possible exception
before, maintain consistent
exception handling strategy in all
layers of code, come up with
guidelines on exception handling
for entire system.

Has written custom macros

Has written libraries that sit on top
of the API to simplify frequently
used tasks and to fill in gaps in the
API

Author of framework

Able to suggest better alternatives
and flows to given requirements
based on experience

Has written and published reusable
code

Can do basic database
administration, performance
optimization, index optimization,
write advanced select queries, able
to replace cursor usage with
relational sql, understands how
data is stored internally,
understands how indexes are
stored internally, understands how
databases can be mirrored,
replicated etc. Understands how
the two phase commit works.

data structures

algorithms

systems programming

source code version
control

build automation

automated testing

languages with
professional experience

platforms with
professional experience

years of professional
experience

domain knowledge

tool knowledge

languages exposed to

codebase knowledge

knowledge of upcoming

technologies

platform internals

books

blogs

COMPUTER SCIENCE

2n (Level 0) n2 (Level 1)

Able to explain and use Arrays,
LinkedLists, Dictionaries etc in
practical programming tasks

Doesn't know
the difference

between Array
and LinkedList

Unable to find
the average of
numbers in an
array (It's hard to
believe but I've
interviewed
such
candidates)

Basic sorting, searching and
data structure traversal and

retrieval algorithms

Doesn’t know

what a compiler,
linker or

interpreter is

Basic understanding of
compilers, linker and
interpreters. Understands what
assembly code is and how
things work at the hardware
level. Some knowledge of
virtual memory and paging.

n (Level 2)

Knows space and time tradeoffs of the
basic data structures, Arrays vs
LinkedLists, Able to explain how
hashtables can be implemented and can
handle collisions, Priority queues and ways
to implement them etc.

Tree, Graph, simple greedy and divide and
conquer algorithms, is able to understand
the relevance of the levels of this matrix.

Understands kernel mode vs. user mode,
multi-threading, synchronization primitives
and how they're implemented, able to read
assembly code. Understands how
networks work, understanding of network
protocols and socket level programming.

SOFTWARE ENGINEERING

2n (Level 0) n2 (Level 1)
Folder backups VSS and beginning CVS/SVN
by date user

Only knows how
to build from IDE

Knows how to build the system
from the command line

Has written automated unit

tests and comes up with good
unit test cases for the code

that is being written

Thinks that all
testing is the job
of the tester

n (Level 2)

Proficient in using CVS and SVN features.
Knows how to branch and merge, use
patches setup repository properties etc.

Can setup a script to build the basic
system

Has written code in TDD manner

EXPERIENCE

2n (Level 0) n2 (Level 1)

Imperative or
Object Oriented

Imperative, Object-Oriented
and declarative (SQL), added
bonus if they understand static
vs dynamic typing, weak vs
strong typing and static
inferred types

1 2-3

Has worked on at least one
product in the domain.

No knowledge
of the domain

n (Level 2)

Functional, added bonus if they understand
lazy evaluation, currying, continuations

6-9

Has worked on multiple products in the
same domain.

KNOWLEDGE

Limited to Knows about some
primary IDE alternatives to popular and
(VS.Net, Eclipse standard tools.

etc.)

Imperative or Imperative, Object-Oriented

Object Oriented and declarative (SQL), added
bonus if they understand static
vs dynamic typing, weak vs
strong typing and static
inferred types

Has never Basic knowledge of the code

looked at the layout and how to build the

codebase system

Has not heard of
the upcoming
technologies

Has heard of upcoming
technologies in the field

Zero knowledge Has basic knowledge of how

of platform the platform works internally
internals
Unleashed Code Complete, Don't Make

me Think, Mastering Regular
Expressions

series, 21 days
series, 24 hour
series, dummies
series...

Reads
tech/programming/software
engineering blogs and listens
to podcasts regularly.

Has heard of
them but never
got the time.

Good knowledge of editors, debuggers,
IDEs, open source alternatives etc. etc. For
e.g. someone who knows most of the tools
from Scott Hanselman's power tools list.
Has used ORM tools.

Functional, added bonus if they understand
lazy evaluation, currying, continuations

Good working knowledge of code base,
has implemented several bug fixes and
maybe some small features.

Has downloaded the alpha
preview/CTP/beta and read some
articles/manuals

Deep knowledge of platform internals and
can visualize how the platform takes the
program and converts it into executable
code.

Design Patterns, Peopleware,
Programming Pearls, Algorithm Design
Manual, Pragmatic Programmer, Mythical
Man month

Maintains a link blog with some collection
of useful articles and tools that he/she has
collected

log(n) (Level 3)

Knowledge of advanced data
structures like B-trees, binomial
and fibonacci heaps, AVL/Red
Black trees, Splay Trees, Skip Lists,
tries etc.

Able to recognize and code
dynamic programming solutions,
good knowledge of graph
algorithms, good knowledge of
numerical computation algorithms,
able to identify NP problems etc.

Understands the entire
programming stack, hardware
(CPU + Memory + Cache +
Interrupts + microcode), binary
code, assembly, static and
dynamic linking, compilation,
interpretation, JIT compilation,
garbage collection, heap, stack,
memory addressing...

log(n) (Level 3)

Knowledge of distributed VCS
systems. Has tried out
Bzr/Mercurial/Darcs/Git

Can setup a script to build the
system and also documentation,
installers, generate release notes
and tag the code in source control

Understands and is able to setup
automated functional,
load/performance and Ul tests

log(n) (Level 3)

Concurrent (Erlang, 0z) and Logic
(Prolog)

6+

Domain expert. Has designed and
implemented several
products/solutions in the domain.
Well versed with standard terms,

mratanale 11aad in tha AAarmAain

Has actually written tools and
scripts, added bonus if they've
been published.

Concurrent (Erlang, 0z) and Logic
(Prolog)

Has implemented multiple big
features in the codebase and can
easily visualize the changes
required for most features or bug
fixes.

Has played with the previews and
has actually built something with it
and as a bonus shared that with
everyone else

Has written tools to enhance or
provide information on platform
internals. For e.g. disassemblers,
decompilers, debuggers etc.

Structure and Interpretation of
Computer Programs, Concepts
Techniques, Models of Computer
Programming, Art of Computer
Programming, Database systems,
by C. J Date, Thinking Forth, Little
Schemer

Maintains a blog in which personal
insights and thoughts on
programming are shared

